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Abstract 

The effect of the topology and the training end point of artificial neural networks (ANN) in the modelling of a 
fluidized bed granulation process is presented. The neural network topologies were designed on the basis of an 
earlier study (Murtoniemi et al., Znt. J. Pharm., 108 (1994) 155-163). In the first part of this study, the networks 
contained only one hidden layer in which the number of neurons was either 10, 15, 20 or 25. The training end points 
with all four networks ranged from 0.15 to 0.07, with a step length of 0.01. In the second part, the training end point 
was fixed to be 0.12, while the number of neurons in the hidden layer varied from 10 to 25. The main purpose of this 
study was to find a suitable ANN in regard to the generalization ability and to compare the results to those 
calculated on the basis of multilinear stepwise regression analysis. The results showed that the number of hidden 
layer neurons did not affect the generalization ability of the networks and a proper generalization ability was 
achieved with rather simple networks. The training end point, however, had a significant effect on the generalization 
ability and it also affects the number of iteration epochs needed. In complicated systems this probably will affect 
remarkably the time required for the training. 

Key words: Artificial neural network; Multilayer feedforward network; Neurocomputing; Training end point; Process 
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1. Introduction 

In our previous study (Murtoniemi et al., 1994) 
it was concluded that the use of artificial neural 
networks (ANN) is a very promising method in 

* Corresponding author. Tel: i-358-0-191-2765; Fax: +358-O- 

191-2786. 

modelling a complex pharmaceutical agglomera- 
tion process: fluidized bed granulation. The net- 
work topologies were studied rather superficially 
just to obtain general information on the suitabil- 
ity of different network topologies in modelling 
the fluidized bed granulation. More accurate 
analysis requires more detailed studies. Our ear- 
lier study suggested that the training end point is 
a critical factor in ANN analysis and therefore 
should be studied more carefully. The term train- 
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ing end point is defined more precisely in the 
earlier paper (Murtoniemi et al., 1994). 

Network topology is the stucture of a neural 
network, which consists of parallel and serial 
connected artificial neurons. Several different 
structures are used in ANN (Lisboa, 1992). In 
this study different variations of the most com- 
mon structure (layered feedforward network) 
were used. Our earlier investigation as well as the 
theoretical principles (Knight, 19901 suggest that 
the more detailed study may focus on the neural 
network topologies in the case where there is 
only one hidden layer. In the previous study there 
were only two response variables (mean granule 
size and granule friability). In normal pharmaceu- 
tical applications, however, the number of re- 
sponses is generally higher. Therefore, one addi- 
tional response (granule flow rate) will be in- 
cluded in this study. 

The effect of the training end point on the 
generalization ability was now studied more sys- 
tematically using the same method as in the ear- 
lier study (Murtoniemi et al., 1994) by calculating 
the average error percentage between the test 
data and the predicted granule properties. The 
numerical value of the training end point in this 
study varied from 0.15 to 0.07, with a step of 0.01. 
In the earlier study the optimal training end 
point, from the point of view of generalization 
ability, was somewhere within this range. Because 
the training data used in this study were exactly 
the same as in the earlier investigation, this train- 
ing area will now be examined in more detail. 

The experimental test data in this study were 
chosen so that each test point was within the 
same range in the factor space as the experimen- 
tal points used to train networks (interpolation). 
At the end the neural network models will be 
compared to the models generated by multilinear 
stepwise regression analysis. 

2. Materials and methods 

2.1. Study design 

The study design is based on our earlier study 
(Murtoniemi et al., 1994). The inlet air tempera- 

Table 1 

Factor levels of the input variables (inlet air temperature (T), 

atomizing air pressure (p) and binder solution amount (m)) 

and flow rate of granules 

T P Flow rate (s) 

(“0 (bar) ‘;g, (x i E) a 
40 1.0 150 12.0+0.1 

40 1.0 300 13.0+0.5 

40 1.0 450 13.2kO.3 

40 1.5 150 12.1*0.1 

40 1.5 300 12.1 kO.2 

40 1.5 450 12.6 f 0.1 

40 2.0 150 12.OkO.2 

40 2.0 300 11.8*0.1 

40 2.0 450 12.0*0.1 

50 1.0 150 12.1 f 0.3 

50 1.0 300 12.3 * 0.3 

50 1.0 450 12.7kO.l 

50 1.5 150 11.8f0.3 

50 1.5 300 11.7kO.2 
50 1.5 450 11.7+0.1 

50 2.0 150 11.8+0.2 

50 2.0 300 12.0 f 0.2 

50 2.0 450 11.7+0.1 

60 1.0 150 11.8kO.l 

60 1.0 300 12.9 f 0.5 

60 1.0 450 12.7 f 0.3 

60 1.5 150 11.6kO.l 

60 1.5 300 11.?3+0.1 

60 1.5 450 12.OiO.l 

60 2.0 150 11.7*0.1 

60 2.0 300 12.0+0.1 

60 2.0 450 12.4+0.1 

a 
x, mean; E, maximum error estimate defined as i.(max- 

min) (n = 3). 

ture CT), atomizing air pressure (p) and binder 
solution amount Cm) were used as the input vari- 
ables. The factor levels (a 33 factorial design) 
used in the production of granules at different 
experimental points are shown in Table 1. All 23 
factorial points were made in duplicate and the 
center point in quadruplicate. 

2.2. Materials and preparation of granules 

The materials and preparation of the granules 
were the same as in the earlier studies, introduc- 
ing the advantages of multilinear stepwise regres- 
sion analysis (Merkku and Yliruusi, 1993; Merkku 
et al., 1993, 1994) and artificial neural networks 
(Murtoniemi et al., 1994). 
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2.3. Granule properties Table 2 

The mean granule size and the granule friabil- 
ity were measured as previously described by 
Murtoniemi et al. (1994). The granule flowability 
was measured by a flow-time and cone angle 
testing instrument (PharmaTest PTG, Pharma- 
Test, Germany) using three parallel measure- 
ments. The flowability was expressed as the flow 
time (s) for a 100 ml sample to flow through an 8 
mm orifice. 

Experimental test data used in studying the generalization 
ability of the networks (T, inlet air temperature; p, atomizing 

air pressure; m, binder solution amount) 

Batch T p m Flow rate 

02) (bar) @ (s) 

2.4. Multilinear stepwise regression analysis 

1, 45 1.8 225 

lb 45 1.8 225 

2, 55 1.8 225 

2, 55 1.8 225 

3, 45 1.3 315 
3 -b 45 1.3 315 

4, 55 1.3 375 

4b 55 1.3 375 

5, 55 1.3 225 

5b 55 1.3 225 

In earlier studies (Merkku and Yliruusi, 1993; 
Merkku et al., 1993, 1994), regression models 
were developed for the mean granule size, gran- 
ule friability and granule flow rate using stepwise 
multilinear regression. The regression models for 
the mean granule size and granule friability were 
the same as in the previous paper (Murtoniemi et 
al., 1994). The regression model for the granule 
flow rate had the following form: 

(l-51, and (l-5), are replicated experiments. 

sigmoidal transform function (Dayhoff, 1990; 
Davalo, 1991). 

2.6. Validation data 

Y = 0.204T2 + 0.27~~ - 0.17pm - 0.2851, 

+ 0.246m + 11.77 (1) 

where Y is the granule flow rate (s), T denotes 
the inlet air temperature (“C), p is the atomizing 
air pressure (bar) and m represents the binder 
solution amount (g). 

In order to study the generalization ability of 
neural networks, five additional granulations were 
performed (Table 2). The factor levels were se- 
lected so that they were within the range of the 
original experimental data. The generalization 
abilities were studied by supporting the test data 
to a network and examining the output values, 
which were the predicted granule properties. 

2.7. ANN simulator software 
2.5. Training data 

The factor levels and the numerical values for 
the mean granule size and granule friability were 
the same as in the previous study (Murtoniemi et 
al;, 1994). Table 1 lists the factor levels used in 
the production of granules and the flow rates of 
the granules now used also as training data. Be- 
fore training, average values for the flow rates 
were calculated in replicate experimental points 
and were used in the training of the networks. 
Both input and output variables were converted 
as in the earlier study (Murtoniemi et al., 1994) to 
values between 0 and 1 with 10% headroom 
before the training because the output of a neu- 
ron is restricted to values between 0 and 1 by the 

A commercially available MS Windows based 
artificial neural network simulator program pack- 
age, NeuDesk V.2.10 (Neural Computer Sci- 
ences, U.K.), was used throughout the study in a 
486 Personal Computer with an accelerator card, 
NeuSprint (Neural Computer Sciences, U.K.). 

3. Results and discussion 

3.1. Generalization ability of neural networks with 
different training end points 

It is commonly known that the training influ- 
ences the performance of the network (Hush and 

Granule Friability 

size (pm) (%I 

382 44.5 

435 40.0 

367 53.9 

425 32.6 

529 14.0 

532 11.5 

437 33.3 

458 16.5 

373 34.5 

386 26.3 

12.4 

12.6 

12.2 

12.3 

13.1 

12.8 

12.7 

12.5 

12.3 

12.5 
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Average error percentages of four different networks using 

different training end points in the case of mean granule size 

Table 3 Table 5 

Average error percentages of four different networks using 

different training end points in the case of granule flow rate 

n Training end point 

0.15 0.14 0.13 0.12 0.11 0.10 0.09 0.08 0.07 

10 19.68 16.77 14.03 12.46 12.69 13.08 14.45 14.75 14.62 

15 21.65 16.13 13.91 12.21 12.36 12.16 12.38 12.98 13.01 

20 18.11 12.43 13.48 12.39 12.36 12.11 12.44 12.61 12.67 

25 21.26 15.52 15.09 12.25 12.29 12.82 13.31 12.74 12.92 

Sum 80.70 60.85 56.51 49.31 49.70 50.17 52.58 53.08 56.22 

n, number of neurons hr the hidden layer. 

Fr Training end point 

0.15 0.14 0.13 0.12 0.11 0.10 0.09 0.08 0.07 

10 4.25 3.86 3.66 4.02 4.13 4.32 4.81 5.09 5.92 

15 3.43 3.22 3.80 4.07 4.17 4.44 4.71 4.99 4.94 

20 2.84 2.80 3.66 3.98 4.16 4.47 4.75 4.97 4.96 

25 4.93 3.96 3.71 4.14 4.15 4.43 4.80 4.93 5.07 

Sum 15.45 13.84 14.83 16.21 16.61 17.66 19.07 19.98 20.89 

n, number of neurons in the hidden layer. 

Horne, 1993; Lodewyck and Deng, 1993). The 
training affects the generalization ability in two 
phases. Soon after starting the training, the gen- 
eralization ability of the network is improved. 
When the training is continued a certain point 
will be reached after which the generalization 
ability becomes worse. The training end point is 
the criterion used for the termination of the 
training. 

been explained in the preceding paper (Murto- 
niemi et al., 1994). 

Tables 3-5 show the significance of the train- 
ing end point to the average error percentage of 
the neural network. The average error percent- 
age is in this study used to characterize the gen- 
eralization ability of the neural network. First, 
the diminution of the training end point im- 
proved the generalization ability (decreased the 
average error percentage) of the network but 
quite soon, if the training end point was too 
small, the average error percentages started to 
increase. After the training end point 0.12, irre- 
spective of the different responses (mean granule 
size, granufe friabili~ and granule flow rate), 
every network (10, 15, 20 or 25 hidden neurons) 
became overtrained. The term overtrained has 

This study showed that the average error per- 
centage varied remarkably when comparing the 
response variables (Tables 3-5). The smallest er- 
ror (2.80) was found with granule flow rate when 
the network was trained to the end point of 0.14. 
The estimations of granule size and friability were 
clearly more inaccurate. This might be due to 
original measurement accuracy of different gran- 
ule properties. It was assumed that the best train- 
ing end point corresponds to the minimum sum 
of average error percentage. For all responses the 
best training end point was between 0.12 and 
0.14. However, when observing different re- 
sponses, the same network loses the generaliza- 
tion ability at different training end points. In the 
case of mean granule size the minimum sum of 
errors (61.17) was achieved using the training end 
point 0.13 (Table 3). On the other hand, granule 
friability had the minimum sum of errors (49.31) 
(Table 4) at the training end point 0.12 and the 
granule flow rate at the training end point 0.14 
(13.84) (Table 5). 

Table 4 

Average error percentages of four different networks using 

different training end points in the case of granule friability 

n Training end point 

0.15 0.14 0.13 0.12 0.11 0.10 0.09 0.08 0.07 

10 18.43 19.06 16.00 17.16 16.57 16.78 17.86 18.56 18.39 

15 14.69 17.14 14.63 16.40 16.78 17.28 18.20 19.03 18.39 

20 16.16 16.48 15.66 16.19 16.68 17.04 17.91 18.88 18.58 

25 16.64 15.66 14.88 16.68 16.76 17.38 18.13 18.49 18.56 
Sum 65.92 68.34 61.17 66.43 66.79 68.48 72.10 74.96 73.92 

n, number of neurons in the hidden layer. 

3.2. Comparison of four different neural network 
topologies to describe the experimental data 

The number of hidden layers is difficult to 
decide, but typically no more than one hidden 
layer is used in a network (Hush and Horne, 
1993). Therefore, this study started with one hid- 
den layer. More hidden layers were not used, 
since all networks converged well. The number of 
connections in the network is directly dependent 
on the number of neurons in the hidden layer. In 
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1 2 3 4 5 

Experimental point 

-Experimental BB 10 15 @B20 a25 

Fig. 1. Mean granule size predictions of four different networks containing 10, 15, 20 and 25 hidden layer neurons and the 

corresponding experimental value in five experimental point. 

the training phase the information of the training 
data is transformed to weight values of the con- 
nections. Therefore, the number of connections 
might have a significant effect on the perfor- 
mance of the network. Because there are no 
theoretical principles for choosing the proper 
network topology several structures were tested 
in the study. 

Four neural network topologies with different 
numbers of hidden layer neurons (10, 15, 20 and 
25) were tested in order to predict granule prop- 
erties. The training end points used were 0.13 

5* ihanule friabili~ (%j ___ 

(mean granule size), 0.12 (granule friability) and 
0.14 (granuIe flow rate) as presented in the previ- 
ous section. Neural model predictions and experi- 
mental values are compared in Fig. 1-3. The 
experimental values are average values of the 
replicate experiments. According to this study, all 
four neural networks tested underestimate the 
values of different responses to some extent in 
most cases when compared to the experimental 
data. Only granule friability at experimental point 
3 was clearly overestimated (Fig. 2). The underes- 
timations were significant, especially with regard 

40 

30 

20 

10 

0 

Ex 

W Experimental BB 10 

Fig. 2. Granule friability predictions of four different networks containing 10, 15, 20 and 25 hidden layer neurons and the 

corresponding experimental values in five experimental point. 
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1 ~ Granule flow rate (s) 

Experimental point 

II Experimental B 10 20 ~225 

Fig. 3. Granule flow rate predictions of four different networks 
corresponding experimental value in five experimental point. 

cantaining 10, 15, Xl and 25 hidden layer neurons and the 

to the mean granule size and flow rate of gran- 
uIes (Fig. 1 and 3). This effect might be at- 
tributable to some unknown and varying process 
parameter, since the original experiment series 
and that for collecting test data were made at 
different times. 

Fig. 1 and 2 show clearly that the number of 
hidden layer neurons only slightly affected the 
estimated values. The predicted values given by 
all four network are quite similar at different 
experimental points. In the case of granule flow 

Average error (f-4) 

rate the predictions varied more depending on 
the topology of the network, and the best predic- 
tions were obtained when the number of hidden 
layer neurons was 20 (Fig, 3). However, this effect 
was not significant. The networks tended to be- 
come easily overtrained, expecially in the case of 
granule flow rate (Table 5). The average error 
percentages start to increase significantly when 
the network is trained above the training end 
point 0.14. It is obvious that the number of neu- 
rons in alI tested networks was large enough for 

20 

16 

12 

8 

4 

0 
15 20 

Hidden layer neurons 
A (flow rate), MB (friability), IC (mean size) 

Fig. 4. Effect of number of hidden layer neurons on the average error percentage of granule flow rate (A), granule friability (B) and 
mean granule size (Cf. 
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modelling the particular process, but the number network models is suggested to improve on in- 

of cases was too limited for more precise summa- creasing the amount of the training data and by 

tions of the effect of the number of hidden layer adding additional process input variables to the 

neurons. training data. 

3.3. Effect of number of neurons in hidden layer on 
the average error percentage 

In the second test series the training end point 
was fixed to be 0.12 in each case. The number of 
neurons in the hidden layer varied from 10 to 25. 
The generalization ability was studied by calculat- 
ing the average error percentages (Murtoniemi et 
al., 1994). Fig. 4 shows clearly that the effect of 
the number of hidden layer neurons on the aver- 
age error is minimal. The accuracy of the predic- 
tions varied depending on the response exam- 
ined. The accuracy of the predictions was the 
best in the case of granule flow rate (Fig. 4) with 
all tested networks, whereas the differences be- 
tween the networks were less than 1%. It seems 
impossible to find any logical relationship be- 
tween the number of neurons in the hidden layer 
and the average error percentage. The effects of 
hidden layer size on network training and perfor- 
mance have been studied recently by Lodewyck 
and Deng (1993). They found that the hidden 
layer size did not affect the performance of net- 
works used for the information system planning. 

It can be concluded that the training end point 
is a very critical factor in training a neural net- 
work, and in future studies it must be selected 
carefully. On the other hand, the number of 
hidden layer neurons does not affect significantly 
the generalization ability and obviously it is not 

possible to improve the performance of the ANN 
model merely by increasing the size of hidden 
layer. The fundamental reason for the discovered 
underestimation of the predictions could not be 
explained sufficiently. There are several different 
training algorithms available, and their suitability 
should be studied in the future. Network topolo- 
gies other than the feedforward networks used in 
this study might be suitable for process mod- 
elling. 
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Regression models (Merkku and Yliruusi, 1993; 
Merkku et al., 1993, 1994) were used to predict 
granule properties (mean granule size, granule 
friability and granule flow rate) from test input 
data. The average error percentage was 19.0 for 
granule mean size, 13.7 for friability and 5.2 for 
flow rate. The corresponding percentages using 
the neural model were 14.6, 12.1 and 2.8. These 
results show that it is possible to predict certain 
granule properties more accurately using neural 
models than with regression models. The neural 
network analysis is very flexible as regards the 
amount of experimental data (training data) used 
to generate a model, which is not always the case 
in regression analysis. The accuracy of neural 
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