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Abstract

The effect of the topology and the training end point of artificial neural networks (ANN) in the modelling of a
fluidized bed granulation process is presented. The neural network topologies were designed on the basis of an
earlier study (Murtoniemi et al., Int. J. Pharm., 108 (1994) 155-163). In the first part of this study, the networks
contained only one hidden layer in which the number of neurons was either 10, 15, 20 or 25. The training end points
with all four networks ranged from 0.15 to 0.07, with a step length of 0.01. In the second part, the training end point
was fixed to be 0.12, while the number of neurons in the hidden layer varied from 10 to 25. The main purpose of this
study was to find a suitable ANN in regard to the generalization ability and to compare the results to those
calculated on the basis of multilinear stepwise regression analysis. The results showed that the number of hidden
layer neurons did not affect the generalization ability of the networks and a proper generalization ability was
achieved with rather simple networks. The training end point, however, had a significant effect on the generalization
ability and it also affects the number of iteration epochs needed. In complicated systems this probably will affect
remarkably the time required for the training.

Key words: Artificial neural network; Multilayer feedforward network; Neurocomputing; Training end point; Process
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1. Introduction modelling a complex pharmaceutical agglomera-
tion process: fluidized bed granulation. The net-

In our previous study (Murtoniemi et al., 1994) work topologies were studied rather superficially

it was concluded that the use of artificial neural just to obtain general information on the suitabil-
networks (ANN) is a very promising method in ity of different network topologies in modelling

the fluidized bed granulation. More accurate
analysis requires more detailed studies. Our ear-
lier study suggested that the training end point is
* Corresponding author. Tel: +358-0-191-2765; Fax: + 358-0- a critical factor in ANN analysis and therefore
191-2786. should be studied more carefully. The term train-
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ing end point is defined more preciscly in the
earlier paper (Murtoniemi et al., 1994).

Network topology is the stucture of a neural
network, which consists of parallel and serial
connected artificial neurons. Several different
structures are used in ANN (Lisboa, 1992). In
this study different variations of the most com-
mon structure (layered feedforward network)
were used. Our earlier investigation as well as the
theoretical principles (Knight, 1990) suggest that
the more detailed study may focus on the neural
network topologies in the case where there is
only one hidden layer. In the previous study there
were only two response variables (mean granule
size and granule friability). In normal pharmaceu-
tical applications, however, the number of re-
sponses is generally higher. Therefore, one addi-
tional response (granule flow rate) will be in-
cluded in this study.

The effect of the training end point on the
generalization ability was now studied more sys-
tematically using the same method as in the ear-
lier study (Murtoniemi et al., 1994) by calculating
the average error percentage between the test
data and the predicted granule properties. The
numerical value of the training end point in this
study varied from 0.15 to 0.07, with a step of 0.01.
In the earlier study the optimal training end
point, from the point of view of generalization
ability, was somewhere within this range. Because
the training data used in this study were exactly
the same as in the earlier investigation, this train-
ing area will now be examined in more detail.

The experimental test data in this study were
chosen so that each test point was within the
same range in the factor space as the experimen-
tal points used to train networks (interpolation).
At the end the neural network models will be
compared to the models generated by multilinear
stepwise regression analysis.

2. Materials and methods

2.1. Study design

The study design is based on our earlier study
(Murtoniemi et al., 1994). The inlet air tempera-

Table 1

Factor levels of the input variables (inlet air temperature (T),
atomizing air pressure (p) and binder solution amount (m))
and flow rate of granules

T P m Flow rate (s)
C) (bar) (2 (xte)?
40 1.0 150 12.0+0.1
40 1.0 300 13.0+0.5
40 1.0 450 13.24+0.3
40 1.5 150 12.1+0.1
40 1.5 300 12.1+0.2
40 1.5 450 12.6 +£0.1
40 2.0 150 12.0+0.2
40 2.0 300 11.8+0.1
40 2.0 450 12.0+0.1
50 1.0 150 12.1+03
50 1.0 300 123403
50 1.0 450 12.7+0.1
50 1.5 150 11.8+0.3
50 1.5 300 11.740.2
50 1.5 450 11.7+0.1
50 2.0 150 11.8+0.2
50 2.0 300 12.0+0.2
50 2.0 450 11.7+0.1
60 1.0 150 11.8+0.1
60 1.0 300 129105
60 1.0 450 12.7+0.3
60 1.5 150 11.6+0.1
60 1.5 300 11.8+0.1
60 1.5 450 12.0+0.1
60 2.0 150 11.740.1
60 2.0 300 12.0+0.1
60 2.0 450 124+0.1

? x, mean; e, maximum error estimate defined as %-(max—

min) (n = 3).

ture (7T"), atomizing air pressure ( p) and binder
solution amount (m) were used as the input vari-
ables. The factor levels (a 3 factorial design)
used in the production of granules at different
experimental points are shown in Table 1. All 23
factorial points were made in duplicate and the
center point in quadruplicate.

2.2. Materials and preparation of granules

The materials and preparation of the granules
were the same as in the earlier studies, introduc-
ing the advantages of multilinear stepwise regres-
sion analysis (Merkku and Yliruusi, 1993; Merkku
et al., 1993, 1994) and artificial neural networks
(Murtoniemi et al., 1994).
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2.3. Granule properties

The mean granule size and the granule friabil-
ity were measured as previously described by
Murtoniemi et al. (1994). The granule flowability
was measured by a flow-time and cone angle
testing instrument (PharmaTest PTG, Pharma-
Test, Germany) using three parallel measure-
ments. The flowability was expressed as the flow
time (s) for a 100 ml sample to flow through an 8
mm orifice.

2.4. Multilinear stepwise regression analysis

In earlier studies (Merkku and Yliruusi, 1993;
Merkku et al., 1993, 1994), regression models
were developed for the mean granule size, gran-
ule friability and granule flow rate using stepwise
multilinear regression. The regression models for
the mean granule size and granule friability were
the same as in the previous paper (Murtoniemi et
al., 1994). The regression model for the granule
flow rate had the following form:

Y =0.204T2 +0.27p% - 0.17pm — 0.285p
+0.246m + 11.77 (1)

where Y is the granule flow rate (s), T denotes
the inlet air temperature (°C), p is the atomizing
air pressure (bar) and m represents the binder
solution amount (g).

2.5. Training data

The factor levels and the numerical values for
the mean granule size and granule friability were
the same as in the previous study (Murtoniemi et
al,, 1994). Table 1 lists the factor levels used in
the production of granules and the flow rates of
the granules now used also as training data. Be-
fore training, average values for the flow rates
were calculated in replicate experimental points
and were used in the training of the networks.
Both input and output variables were converted
as in the earlier study (Murtoniemi et al., 1994) to
values between 0 and 1 with 10% headroom
before the training because the output of a neu-
ron is restricted to values between 0 and 1 by the

Table 2

Experimental test data used in studying the generalization
ability of the networks (7', inlet air temperature; p, atomizing
air pressure; m, binder solution amount)

Batch T p m  Granule Friability Flow rate
°C) (bar) (g) size (um) (%) ®
1, 45 18 225 382 445 12.4
1p 45 1.8 225 435 40.0 12.6
2, 55 1.8 225 367 53.9 12.2
2y 55 1.8 225 425 32.6 12.3
3, 45 1.3 375 529 14.0 13.1
3y 45 1.3 375 532 11.5 12.8
4, 55 1.3 375 437 333 12.7
4, 55 1.3 375 458 16.5 12.5
5. 55 13 225 373 345 12.3
5 55 13 225 386 26.3 125

(1-5), and (1-5),, are replicated experiments.

sigmoidal transform function (Dayhoff, 1990;
Davalo, 1991).

2.6. Validation data

In order to study the generalization ability of
neural networks, five additional granulations were
performed (Table 2). The factor levels were se-
lected so that they were within the range of the
original experimental data. The generalization
abilities were studied by supporting the test data
to a network and examining the output values,
which were the predicted granule properties.

2.7. ANN simulator software

A commercially available MS Windows based
artificial neural network simulator program pack-
age, NeuDesk V.2.10 (Neural Computer Sci-
ences, U.K.), was used throughout the study in a
486 Personal Computer with an accelerator card,
NeuSprint (Neural Computer Sciences, U.K.).

3. Results and discussion

3.1. Generalization ability of neural networks with
different training end points

It is commonly known that the training influ-
ences the performance of the network (Hush and
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Table 3
Average error percentages of four different networks using
different training end points in the case of mean granule size

Table 5
Average error percentages of four different networks using
different training end points in the case of granule flow rate

n Training end point
0.15 0.14 013 012 0.11 010 0.09 0.08 0.07

n Training end point
0.15 014 013 012 011 010 009 008 0.07

10 19.68 16.77 14.03 12.46 12.69 13.08 14.45 14.75 14.62
15 21.65 16.13 13.91 12.21 12.36 12.16 12.38 12.98 13.01
20 18.11 12.43 13.48 12.39 12.36 12.11 12.44 12.61 12.67
25 21.26 1552 15.09 12.25 12.29 12.82 13.31 12.74 12.92
Sum 80.70 60.85 56.51 49.31 49.70 50.17 52.58 53.08 56.22

10 425 386 3.66 4.02 413 432 481 509 592
15 343 322 380 4.07 417 444 471 499 494
20 2.84 280 3.66 398 4,16 447 475 497 4.96
25 493 396 371 414 415 443 480 493 507
Sum 1545 13.84 14.83 16.21 16.61 17.66 19.07 19.98 20.89

#n, number of neurons in the hidden layer.

Horne, 1993; Lodewyck and Deng, 1993). The
training affects the generalization ability in two
phases. Soon after starting the training, the gen-
eralization ability of the network is improved.
When the training is continued a certain point
will be reached after which the generalization
ability becomes worse. The training end point is
the criterion used for the termination of the
training,

Tables 3-5 show the significance of the train-
ing end point to the average error percentage of
the neural network. The average error percent-
age is in this study used to characterize the gen-
eralization ability of the neural network. First,
the diminution of the training end point im-
proved the generalization ability (decreased the
average error percentage) of the network but
quite soon, if the training end point was too
small, the average error percentages started to
increase. After the training end point 0.12, irre-
spective of the different responses (mean granule
size, granule friability and granule flow rate),
every network (10, 15, 20 or 25 hidden neurons)
became overtrained. The term overtrained has

Table 4
Average error percentages of four different networks using
different training end points in the case of granule friability

n Training end point
015 014 0.13 012 011 010 009 008 007

10 18.43 19.06 16.00 17.16 16.57 16.78 17.86 18.56 18.39
15 14.69 17.14 14.63 16.40 16.78 17.28 18.20 19.03 18.39
20 16.16 16.48 15.66 16.19 16.68 17.04 17.91 18.88 18.58
25  16.64 15.66 14.88 16.68 16.76 17.38 18.13 18.49 18.56
Sum 65.92 68.34 61.17 66.43 66.79 68.48 72.10 74.96 73.92

n, number of neurons in the hidden layer.

n, number of neurons in the hidden layer.

been explained in the preceding paper (Murto-
niemi et al., 1994).

This study showed that the average error per-
centage varied remarkably when comparing the
response variables (Tables 3-5). The smallest er-
ror (2.80) was found with granule flow rate when
the network was trained to the end point of 0.14.
The estimations of granule size and friability were
clearly more inaccurate. This might be due to
original measurement accuracy of different gran-
ule properties. It was assumed that the best train-
ing end point corresponds to the minimum sum
of average error percentage. For all responses the
best training end point was between 0.12 and
0.14. However, when observing different re-
sponses, the same network loses the generaliza-
tion ability at different training end points. In the
case of mean granule size the minimum sum of
errors (61.17) was achieved using the training end
point 0.13 (Table 3). On the other hand, granule
friability had the minimum sum of errors (49.31)
(Table 4) at the training end point 0.12 and the
granule flow rate at the training end point 0.14
(13.84) (Table 5).

3.2. Comparison of four different neural network
topologies to describe the experimental data

The number of hidden layers is difficult to
decide, but typically no more than one hidden
layer is used in a network (Hush and Horne,
1993). Therefore, this study started with one hid-
den layer. More hidden layers were not used,
since all networks converged well. The number of
connections in the network is directly dependent
on the number of neurons in the hidden layer. In
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Fig. 1. Mean granule size predictions of four different networks containing 10, 15, 20 and 25 hidden layer neurons and the

corresponding experimental value in five experimental point.

the training phase the information of the training
data is transformed to weight values of the con-
nections. Therefore, the number of connections
might have a significant effect on the perfor-
mance of the network. Because there are no
theoretical principles for choosing the proper
network topology several structures were tested
in the study.

Four neural network topologies with different
numbers of hidden layer neurons (10, 15, 20 and
25) were tested in order to predict granule prop-
erties. The training end points used were 0.13

0 Granule friability (%)

(mean granule size), 0.12 (granule friability) and
0.14 (granule flow rate) as presented in the previ-
ous section. Neural model predictions and experi-
mental values are compared in Fig. 1-3. The
experimental values are average values of the
replicate experiments. According to this study, all
four neural networks tested underestimate the
values of different responses to some extent in
most cases when compared to the experimental
data. Only granule friability at experimental point
3 was clearly overestimated (Fig. 2). The underes-
timations were significant, especially with regard
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Fig. 2. Granule friability predictions of four different networks containing 10, 15, 20 and 25 hidden layer neurons and the

corresponding experimental values in five experimental point.
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Granule flow rate (s)
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Fig. 3. Granule flow rate predictions of four different networks containing 10, 15, 20 and 25 hidden layer neurons and the

corresponding experimental value in five experimental point.

to the mean granule size and flow rate of gran-
ules (Fig. 1 and 3). This effect might be at-
tributable to some unknown and varying process
parameter, since the original experiment series
and that for collecting test data were made at
different times.

Fig. 1 and 2 show clearly that the number of
hidden layer neurons only slightly affected the
estimated values. The predicted values given by
all four network are quite similar at different
experimental points. In the case of granule flow

Average error (%)

rate the predictions varied more depending on
the topology of the network, and the best predic-
tions were obtained when the number of hidden
layer neurons was 20 (Fig. 3). However, this effect
was not significant. The networks tended to be-
come easily overtrained, expecially in the case of
granule flow rate (Table 5). The average error
percentages start to increase significantly when
the network is trained above the training end
point 0.14. It is obvious that the number of neu-
rons in all tested networks was large enough for

10 15

20

o]
wn

Hidden layer neurons
B A (flow rate), CIB (friability), BEC (mean size)

Fig. 4. Effect of number of hidden layer neurons on the average error percentage of granule flow rate (A), granule friability (B) and

mean granule size (C).
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modelling the particular process, but the number
of cases was too limited for more precise summa-
tions of the effect of the number of hidden layer
neurons.

3.3. Effect of number of neurons in hidden layer on
the average error percentage

In the second test series the training end point
was fixed to be 0.12 in each case. The number of
neurons in the hidden layer varied from 10 to 25.
The generalization ability was studied by calculat-
ing the average error percentages (Murtoniemi et
al., 1994). Fig. 4 shows clearly that the effect of
the number of hidden layer ncurons on the aver-
age error is minimal. The accuracy of the predic-
tions varied depending on the response exam-
ined. The accuracy of the predictions was the
best in the case of granule flow rate (Fig. 4) with
all tested networks, whereas the differences be-
tween the networks were less than 1%. It seems
impossible to find any logical relationship be-
tween the number of neurons in the hidden layer
and the average error percentage. The effects of
hidden layer size on network training and perfor-
mance have been studied recently by Lodewyck
and Deng (1993). They found that the hidden
layer size did not affect the performance of net-
works used for the information system planning.

3.4. Comparison of the best network and the regres-
sion model

Regression models (Merkku and Yliruusi, 1993;
Merkku et al., 1993, 1994) were used to predict
granule properties (mean granule size, granule
friability and granule flow rate) from test input
data. The average error percentage was 19.0 for
granule mean size, 13.7 for friability and 5.2 for
flow rate. The corresponding percentages using
the neural model were 14.6, 12.1 and 2.8. These
results show that it is possible to predict certain
granule properties more accurately using neural
models than with regression models. The neural
network analysis is very flexible as regards the
amount of experimental data (training data) used
to generate a model, which is not always the case
in regression analysis. The accuracy of neural

network models is suggested to improve on in-
creasing the amount of the training data and by
adding additional process input variables to the
training data.

It can be concluded that the training end point
is a very critical factor in training a neural net-
work, and in future studies it must be selected
carefully. On the other hand, the number of
hidden layer neurons does not affect significantly
the generalization ability and obviously it is not
possible to improve the performance of the ANN
model merely by increasing the size of hidden
layer. The fundamental reason for the discovered
underestimation of the predictions could not be
explained sufficiently. There are several different
training algorithms available, and their suitability
should be studied in the future. Network topolo-
gies other than the feedforward networks used in
this study might be suitable for process mod-
elling.
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